Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 23(1): 6, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218869

RESUMO

BACKGROUND: Antibiotic resistance is one of the most serious global health problems and threatens the effective treatment of bacterial infections. Of greatest concern are infections caused by extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC). The aim of our study was to evaluate the prevalence and molecular characteristics of ESBL-EC isolated over an 18-year pre-COVID period from lower respiratory tract (LRT) samples collected from selected Slovenian hospitals. OBJECTIVES AND METHODS: All isolates were identified by MALDI-TOF and phenotypically confirmed as ESBLs by a disk diffusion assay. Using a PCR approach, 487 non-repetitive isolates were assigned to phylogroups, sequence type groups, and clonal groups. Isolates were also screened for virulence-associated genes (VAGs) and antimicrobial resistance genes. RESULTS: The prevalence of ESBL-EC isolates from LRT in a large university hospital was low (1.4%) in 2005 and increased to 10.8% by 2019. The resistance profile of 487 non-repetitive isolates included in the study showed a high frequency of group 1 blaCTX-M (77.4%; n = 377), blaTEM (54.4%; n = 265) and aac(6')-Ib-cr (52%; n = 253) genes and a low proportion of blaSHV and qnr genes. Isolates were predominantly assigned to phylogroup B2 (73.1%; n = 356), which was significantly associated with clonal group ST131. The ST131 group accounted for 67.6% (n = 329) of all isolates and had a higher number of virulence factor genes than the non-ST131 group. The virulence gene profile of ST131 was consistent with that of other extraintestinal pathogenic E. coli (ExPEC) strains and was significantly associated with ten of sixteen virulence factor genes tested. Using ERIC-PCR fingerprinting, isolates with the same ERIC-profile in samples from different patients, and at different locations and sampling dates were confirmed, indicating the presence of "hospital-adapted" strains. CONCLUSION: Our results suggest that the ESBL-EC isolates from LRT do not represent a specific pathotype, but rather resemble other ExPEC isolates, and may be adapted to the hospital environment. To our knowledge, this is the first study of ESBL-EC isolated from LRT samples collected over a long period of time.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Eslovênia/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Fatores de Virulência/genética , beta-Lactamases/genética , Sistema Respiratório
2.
Trop Med Infect Dis ; 8(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235321

RESUMO

Biocidal products prevent the spread of pathogenic microorganisms, including extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC), which is one of the most alarming health problems worldwide. Quaternary ammonium compounds (QACs) are surface-active agents that interact with the cytoplasmic membrane and are widely used in hospitals and food processing environments. A collection of 577 ESBL-EC, isolated from lower respiratory tract (LRT) samples, was screened for QAC resistance genes oqxA; oqxB; qacEΔ1; qacE; qacF/H/I; qacG; sugE (p); emrE; mdfA; sugE (c); ydgE; ydgF; and for class 1, 2, and 3 integrons. The prevalence of chromosome-encoded genes ranged from 77 to 100%, while the prevalence of QAC resistance genes encoded on mobile genetic elements (MGEs) was relatively low (0-0.9%), with the exception of qacEΔ1 (54.6%). PCR screening detected the presence of class 1 integrons in 36.3% (n = 210) of isolates, which were positively correlated with qacEΔ1. More correlations between QAC resistance genes, integrons, sequence type group ST131, and ß-lactamase genes were presented. The results of our study confirm the presence of QAC resistance genes and also class 1 integrons commonly found in multidrug-resistant clinical isolates and highlight the potential role of QAC resistance genes in the selection of ESBL-producing E. coli in hospitals.

3.
J Cardiovasc Dev Dis ; 9(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35877573

RESUMO

Besides lipids, inflammation, angiogenesis, coagulation and fibrinolysis play very important roles in coronary artery disease (CAD). We measured gene expression of the inflammatory markers interleukin (IL)-1ß (IL1B) and interferon (IFN)-γ (IFNG), vascular endothelial growth factor-A (VEGF-A) (VEGFA), and coagulation and fibrinolysis markers tissue factor (TF) (F3) and plasminogen activator inhibitor-1 (PAI-1) (SERPINE) in healthy controls and CAD patients with high lipoprotein(a) (Lp(a)). The aim of our study was to identify, first, if there is a difference in these markers between controls and patients; secondly, if these markers are associated with lipids; and third, what the influence of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors is on these markers. We included 124 subjects, 27 controls and 97 patients with CAD (30 in placebo and 67 in the PCSK9 group). Blood samples were collected for lipid and gene measurement. The results showed higher expression of IL1B (p < 0.0001), VEGFA (p < 0.0001), and F3 (p = 0.018) in controls in comparison with patients. Significant correlations were observed between IL1B and lipids. Treatment with PCSK9 inhibitors increased VEGFA (p < 0.0001) and F3 (p = 0.001), and decreased SERPINE (p = 0.043). The results of our study underpin the importance of IL-1ß, VEGF-A and TF in CAD as well as the effect of PCSK9 treatment on these markers.

4.
Genes (Basel) ; 8(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878163

RESUMO

RECQ1 helicase has multiple roles in DNA replication, including restoration of the replication fork and DNA repair, and plays an important role in tumour progression. Its expression is highly elevated in glioblastoma as compared to healthy brain tissue. We studied the effects of small hairpin RNA (shRNA)-induced silencing of RECQ1 helicase on the increase in cell number and the invasion of U87 glioblastoma cells. RECQ1 silencing reduced the rate of increase in the number of U87 cells by 30%. This corresponded with a 40% reduction of the percentage of cells in the G2 phase of the cell cycle, and an accumulation of cells in the G1 phase. These effects were confirmed in vivo, in the brain of zebrafish ( Daniorerio ) embryos, by implanting DsRed-labelled RECQ1 helicase-silenced and control U87 cells. The growth of resulting tumours was quantified by monitoring the increase in xenograft fluorescence intensity during a three-day period with fluorescence microscopy. The reduced rate of tumour growth, by approximately 30% in RECQ1 helicase-silenced cells, was in line with in vitro measurements of the increase in cell number upon RECQ1 helicase silencing. However, RECQ1 helicase silencing did not affect invasive behaviour of U87 cells in the zebrafish brain. This is the first in vivo confirmation that RECQ1 helicase is a promising molecular target in the treatment of glioblastoma.

5.
Radiol Oncol ; 50(2): 159-67, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247548

RESUMO

BACKGROUND: An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. MATERIALS AND METHODS: We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. RESULTS: By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. CONCLUSIONS: This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...